Abstract

Focused ultrasound (FUS) shows great promise for use in the area of transcranial therapy. Currently dependent on MRI for monitoring, transcranial FUS would benefit from a real-time technique to monitor acoustic emissions during therapy. A polyvinylidene fluoride receiver with an active area of 17.8 mm (2) and a film thickness of 110 mum was constructed. A compact preamplifier was designed to fit within the receiver to improve the receiver SNR and allow the long transmission line needed to remove the receiver electronics outside of the MRI room. The receiver was compared with a 0.5 mm commercial needle hydrophone and focused and unfocused piezoceramics. The receiver was found to have a higher sensitivity than the needle hydrophone, a more wideband response than the piezoceramic, and sufficient threshold for detection of microbubble emissions. Sonication of microbubbles directly and through a fragment of human skull demonstrated the ability of the receiver to detect harmonic bubble emissions, and showed potential for use in a larger scale array. Monitoring of disruption of the blood-brain barrier in rats showed functionality in vivo and the ability to detect subharmonic, harmonic, and wideband emissions during therapy. The receiver shows potential for monitoring acoustic emissions during treatments and providing additional parameters to assist treatment planning. Future work will focus on developing a multi-element array for transcranial treatment monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.