Abstract

The magnitude of P-glycoprotein [(P-gp)/multidrug resistance protein 1 (MDR1)]-mediated drug-drug interaction (DDI) at the blood-brain barrier (BBB) in rats was estimated by in vitro-in vivo correlation (IVIVC). In in vitro studies, rat Mdr1a-expressing LLC-PK1 cells were examined for the evaluation of P-gp inhibitory activity using digoxin as a P-gp probe substrate. The in vitro K(i) value was calculated using a modified corrected flux ratio that reflects the P-gp function. In in vivo studies, digoxin with or without P-gp inhibitors was administered to rats by constant intravenous infusion to evaluate the effect of P-gp inhibition on digoxin transport to the brain under steady-state conditions. In the presence of elacridar, the brain-to-plasma concentration ratio (K(p,brain)) of digoxin was approximately 14 times the control value. However, no significant change in the K(p,brain) was observed in the presence of clinically used P-gp inhibitors, with the exception of cyclosporine A. A positive correlation was found between the in vivo K(p,brain) of digoxin and [I(,unbound)/K(i)] (where I(,unbound) is the unbound plasma concentration of P-gp inhibitors). Compounds with [I(,unbound)/K(i)] values of >1 increased K(p,brain) of digoxin in rats. In summary, we used a quantitative approach to evaluate the impact of P-gp-mediated DDI at the rat BBB. We successfully established the IVIVC, which indicated the potential DDI in the presence of potent P-gp inhibitors. On the basis of the IVIVC in rats and K(i) values in human MDR1, we speculated that clinically used P-gp inhibitors do not cause DDI at the human BBB, because none of the compounds studied showed [I(,unbound)/K(i)] values of >1 at therapeutic doses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call