Abstract

We previously described a dominant suppressor of the splicing defect conferred by an A→;C intron branchpoint mutation in S. cerevisiae. Suppression occurs by increasing the frequency with which the mutant branchpoint is utilized. We have now cloned the genomic region encoding the prp16-1 suppressor function and have demonstrated that PRP16 is essential for viability. A 1071 amino acid open reading frame contains sequence motifs characteristic of an NTP binding fold and further similarities to a superfamily of proteins that includes members with demonstrated RNA-dependent ATPase activity. A single nucleotide change necessary to confer the prp16-1 suppressor phenotype results in a Tyr→Asp substitution near the “A site” consensus for NTP binding proteins. We propose that PRP16 is an excellent candidate for mediating one of the many ATP-requiring steps of spliceosome assembly and that accuracy of branchpoint recognition may be coupled to ATP binding and/or hydrolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.