Abstract

SummaryThis paper addresses a modified singularity removal technique for the eigenvalue or optimal mode problems in pipe flow using a pseudospectral method. The current approach results in the linear stability operator to be devoid of any unstable physically spurious modes, and thus, it provides higher numerical stability during time‐based integration. The correctness of the numerical operator is established by calculating the known eigenvalues of pipe Poiseuille flow. Subsequently, the optimal modes are determined with Farrell's approach and compared with the existing literature. The usefulness of this approach is further demonstrated in the time‐based numerical integration of the linearized Navier‐Stokes operator for the adjoint method–based optimal mode determination. The numerical scheme is implemented with the radial velocity‐radial vorticity formulation. Even number of Chebyshev‐Lobatto grid points are distributed over the domain r∈[−1,1] omitting the centerline, which also efficiently provides higher resolution near the wall boundary. The boundary conditions are imposed with homogeneous wall boundary conditions, whereas the analytic nature of a proper set of base functions enforces correct centerline conditions. The resulting redundancy introduced in the process is eliminated with the proper usage of parity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.