Abstract

Three-dimensional models of the proton exchange membrane fuel cell are necessary to study important issues such as water and thermal management and flow field design, but not practical due to computational cost of simulation of a full cell. Here, we present a pseudo three-dimensional model to mitigate the computational cost of three-dimensional models. The model includes in-plane transport equations in channels and gas diffusion layers explicitly, and through-plane transport is based on resistance relationships through the thin membrane and catalyst layers. Polarization curves and distributions of species for a small section of a fuel cell that consists of straight channels, gas diffusion layers, catalyst layers and the membrane are compared with the results from a full three-dimensional model of the same cell for the variations in the channel height, gas diffusion layer thickness, widths of the channels and ribs, operation temperature, and relative humidity of the reactant gases at the inlets. Overall, results from the pseudo three-dimensional model compare very well with the ones from the full three-dimensional model and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.