Abstract

The performance of a proton exchange membrane fuel cell (PEMEC) depends on appropriate design of the flow field, particularly at the cathode side of PEMEC. Uniform distribution of the parameters such as current density, temperature, and pressure, along with proper management of water and heat, enhances overall performance and durability of PEMFC. In this study, we proposed a comprehensive 3D multiphase CFD model of a PEMFC with a new flow field pattern at the cathode side. Honeycomb flow field is composed of a regular pattern of hexagonal pins which are categorized in pin-type flow fields. The behavior of such a field is numerically analyzed by solving a set of continuity, momentum, energy, species and electrochemical equations. The obtained results revealed that maximum pressure-drop across the cathode gas channel are 762 Pa, while the pressure and temperature distributions are uniform at the gas diffusion layer (GDL)-catalyst layer (CL) interface. Also, the results indicated that water content is less than 14 in the membrane, reducing the possibility of water flooding in the CL. It was also found that the possibility of hotspots and flooding phenomena in PEMFC decrease by increasing the uniformity of temperature, pressure, and oxygen mass fraction distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.