Abstract
In this paper, the problem of solving generalized fractional programs will be addressed. This problem has been extensively studied and several algorithms have been proposed. In this work, we propose an algorithm that combines the proximal point method with a continuous min–max formulation of discrete generalized fractional programs. The proposed method can handle non-differentiable convex problems with possibly unbounded feasible constraints set, and solves at each iteration a convex program with unique dual solution. It generates two sequences that approximate the optimal value of the considered problem from below and from above at each step. For a class of functions, including the linear case, the convergence rate is at least linear.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have