Abstract

With increasing collapses of civil infrastructures and popularized utilization of large-scale structures, worldwide deployment of structural health monitoring (SHM) systems is of importance in emerging and future SHM industry. A reliable and practical tool of optimal wireless sensor placement (OWSP) can promote implementation of wireless-based SHM systems by reducing construction cost, extending lifetime and improving detection accuracy. This paper presents a prototype of wireless sensor placement (WSP) for bridge SHM based on multi-objective optimisation (MOO) technique and bridge information modelling (BrIM) technology. MOO technique is used to determine sensor locations by simultaneously searching for multiple trade-offs among structural engineering, wireless engineering and construction management. The BrIM model will be used as a platform to validate and visualize the proposed MOO. A BrIM integrated design tool will be developed to improve the efficiency in design stage through visualisation capabilities and semantic enrichment of a bridge model. As future applications, 4D BrIM that combines time-related information in visual environments with the 3D geometric and semantic BrIM model will help engineers and contractors to visualise possible defects and project costs in the real world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call