Abstract
We propose a novel method for thin-film fabrication using the mid-infrared free electron laser (MIR-FEL) having a tunable wavelength. In the fabrication process, the MIR-FEL stimulates the molecules to be processed into an excited vibrational state, when the photon energy of the MIR-FEL corresponds to one of the energy states of the molecules. During the process, the MIR-FEL irradiates a substrate on which a thin film is being fabricated simultaneously by a conventional method. Therefore, the method can, in principle, realize the thin-film fabrication quasi-independent of the substrate temperature. Because of its tunable wavelength, the method has the advantage of permitting selective fabrication with the mixed-gas chemical vapor deposition (CVD) process on a temperature-sensitive substrate such as a plastic film. In order to realize this method, we developed two thin-film fabrication devices (an MIR-FEL assisted RF sputtering device and an MIR-FEL assisted laser ablation deposition device).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have