Abstract

If the Total Loss of Feedwater (TLFW) accident occurs in a VVER reactor, the primary side Feed & Bleed (F&B) recovery strategy prevents core damage by reducing the reactor's pressure by opening the pressurizer's safety valves and establishing core cooling by the Emergency Core Cooling System (ECCS). Although the strategy saves the core, the leaked coolant together with the containment spray system pollutes the containment environment, deactivates electrical devices, and jeopardizes the containment integrity by the release of the generated hydrogen during the core re-flooding. Further, Steam Generators (SGs) would be exposed to excessive thermal stress because of drying out, making use of recovered feedwater too risky because of the primary to secondary side leakage possibility. ECCS in VVER-1000/V446 has low-pressure Hydro accumulators (HAs) that could carry out secondary side F&B through SGs. This feasibility study uses Deterministic Safety Analysis (DSA) to show that the secondary side F&B recovery strategy can provide 6 h after losing Emergency Feedwater (EFW) which is a significant time to recover the failed safety systems. This strategy is more significant, especially if the TLFW accident is followed by the loss of A.C. power, which makes the primary side F&B ineffective, leading to the core meltdown within 2 h. The Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) is used to calculate Human Error Probability (HEP) for the primary and secondary side F&B recoveries. Probabilistic Safety Assessment (PSA) reveals that the proposed recovery strategy reduces the Core Damage Frequency (CDF) by one order of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call