Abstract

AbstractIn this paper, a new set of boundary‐domain integral equations is derived from the continuity and momentum equations for three‐dimensional viscous flows. The primary variables involved in these integral equations are velocity, traction, and pressure. The final system of equations entering the iteration procedure only involves velocities and tractions as unknowns. In the use of the continuity equation, a complex‐variable technique is used to compute the divergence of velocity for internal points, while the traction‐recovery method is adopted for boundary points. Although the derived equations are valid for steady, unsteady, compressible, and incompressible problems, the numerical implementation is only focused on steady incompressible flows. Two commonly cited numerical examples and one practical pipe flow problem are presented to validate the derived equations. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.