Abstract

Lithium-sulfur (Li-S) batteries represent a promising solution for achieving high energy densities exceeding 500Wh kg-1, leveraging cathode materials with theoretical energy densities up to 2600Wh kg-1. These batteries are also cost-effective, abundant, and environment-friendly. In this study, an innovative approach is proposed utilizing highly oxidized single-walled carbon nanotubes (Ox-SWCNTs) as a conductive fibrous scaffold and functional interlayer in sulfur cathodes and separators, respectively, to demonstrate large-area and ultra-flexible Li-S batteries with enhanced energy density. The free-standing sulfur cathodes in the Li-S cells exhibit high energy density maintaining 806 mAh g-1 even after 100 charge-discharge cycles. Additionally, oxygen-containing functional groups on the SWCNTs significantly improve electrochemical performance by promoting the adsorption of lithium polysulfides. Employing Ox-SWCNTs in both cathodes and interlayers, the study achieves high-capacity Li-S pouch cells that consistently deliver a capacity of 1.06 Ah and a high energy density of 909 mAh g-1 over 50 charge-discharge cycles. This strategy not only significantly enhances the electrochemical performance of Li-S batteries but also maintains excellent mechanical flexibility under severe deformation, positioning this Ox-SWCNT-based architecture as a viable, light-weight, and ultra-flexible energy storage solution suitable for commercializing rechargeable Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.