Abstract
Nighttime light remote sensing has been an increasingly important proxy for human activities. Despite an urgent need for long-term products and pilot explorations in synthesizing them, the publicly available long-term products are limited. A Night-Time Light convolutional LSTM network is proposed and applied the network to produce a 1-km annual Prolonged Artificial Nighttime-light DAtaset of China (PANDA-China) from 1984 to 2020. Assessments between modeled and original images show that on average the RMSE reaches 0.73, the coefficient of determination (R2) reaches 0.95, and the linear slope is 0.99 at the pixel level, indicating a high confidence in the quality of generated data products. Quantitative and visual comparisons witness PANDA-China’s superiority against other NTL datasets in its significantly longer NTL dynamics, higher temporal consistency, and better correlations with socioeconomics (built-up areas, gross domestic product, population) characterizing the most relevant indicator in different development phases. The PANDA-China product provides an unprecedented opportunity to trace nighttime light dynamics in the past four decades.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have