Abstract
The development of artificial intelligence is typically focused on computer algorithms and integrated circuits. Recently, all-optical diffractive deep neural networks have been created that are based on passive structures and can perform complicated functions designed by computer-based neural networks. However, once a passive diffractive deep neural network architecture is fabricated, its function is fixed. Here we report a programmable diffractive deep neural network that is based on a multi-layer digital-coding metasurface array. Each meta-atom on the metasurfaces is integrated with two amplifier chips and acts an active artificial neuron, providing a dynamic modulation range of 35 dB (from −22 dB to 13 dB). We show that the system, which we term a programmable artificial intelligence machine, can handle various deep learning tasks for wave sensing, including image classification, mobile communication coding–decoding and real-time multi-beam focusing. We also develop a reinforcement learning algorithm for on-site learning and a discrete optimization algorithm for digital coding. Using a multi-layer metasurface array in which each meta-atom of the metasurface acts as an active artificial neuron, a programmable diffractive deep neural network can be created that directly processes electromagnetic waves in free space for wave sensing and wireless communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.