Abstract
This paper presents a floating-gate (FG)-based, field-programmable analog array (FPAA) system-on-chip (SoC) that integrates analog and digital programmable and configurable blocks with a 16-bit open-source MSP430 microprocessor ( $\mu \text{P}$ ) and resulting interface circuitry. We show the FPAA SoC architecture, experimental results from a range of circuits compiled into this architecture, and system measurements. A compiled analog acoustic command-word classifier on the FPAA SoC requires 23 $\mu \text{W}$ to experimentally recognize the word dark in a TIMIT database phrase. This paper jointly optimizes high parameter density (number of programmable elements/area/process normalized), as well as high accessibility of the computations due to its data flow handling; the SoC FPAA is 600 $000\times $ higher density than other non-FG approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.