Abstract

The selective inhibition of cancer-associated human carbonic anhydrase (CA) enzymes, specifically CA IX and XII, has been validated as a mechanistically novel approach toward personalized cancer management. Herein we report the design and synthesis of a panel of 24 novel glycoconjugate primary sulfonamides that bind to the extracellular catalytic domain of CA IX and XII. These compounds were synthesized from variably acylated glycopyranosyl azides and either 3- or 4-ethynyl benzene sulfonamide using Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC). The CA enzyme inhibition profile for all compounds was determined, while in vitro metabolic stability, plasma stability, and plasma protein binding for a representative set of compounds was measured. Our findings demonstrate the influence of the differing acyl groups on these key biopharmaceutical properties, confirming that acyl group protected carbohydrate-based sulfonamides have potential as prodrugs for selectively targeting the extracellular cancer-associated CA enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.