Abstract

Using a directed acyclic graph (DAG) model of algorithms, the authors focus on processor-time-minimal multiprocessor schedules: time-minimal multiprocessor schedules that use as few processors as possible. The Kung, Lo, and Lewis (KLL) algorithm for computing the transitive closure of a relation over a set of n elements requires at least 5n-4 parallel steps. As originally reported. their systolic array comprises n/sup 2/ processing elements. It is shown that any time-minimal multiprocessor schedule of the KLL algorithm's dag needs at least n/sup 2//3 processing elements. Then a processor-time-minimal systolic array realizing the KLL dag is constructed. Its processing elements are organized as a cylindrically connected 2-D mesh, when n=0 mod 3. When n not=0 mod 3, the 2-D mesh is connected as a torus.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call