Abstract

Using a directed acyclic graph (DAG) model of algorithms, the paper focuses on time-minimal multiprocessor schedules that use as few processors as possible. Such a processor-time-minimal scheduling of an algorithm's DAG first is illustrated using a triangular shaped 2-D directed mesh (representing, for example, an algorithm for solving a triangular system of linear equations). Then, algorithms represented by an n*n*n directed mesh are investigated. This cubical directed mesh is fundamental; it represents the standard algorithm for computing matrix product as well as many other algorithms. Completion of the cubical mesh required 3n-2 steps. It is shown that the number of processing elements needed to achieve this time bound is at least (3n/sup 2/4/). A systolic array for the cubical directed mesh is then presented. It completes the mesh using the minimum number of steps and exactly (3n/sup 2/4/) processing elements it is processor-time-minimal. The systolic array's topology is that of a hexagonally shaped, cylindrically connected, 2-D directed mesh. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call