Abstract

The paper reviews advanced process for manufacturing high-precision optical components used in space-based electrooptic systems for scientific research and Earth remote sensing. It presents an integrated process for automatic shaping (TESAF) of aspheric surfaces, including off-axis surfaces, of optical elements for electrooptic systems. This paper discusses various methods for shaping optical parts with virtually any degree of asphericity and various values of the off-axis parameter (off-axis aspherics) achieving surface shape precision to within λ/60…λ/80 (λ = 0.6328 micron) by the standard deviation criteria. The paper also presents the newly developed off-axis collimators, designed to shape a reference wavefront within a broad spectral range from ultraviolet to infrared radiation. In particular, a mirror collimator with an adaptive off-axis mirror that is capable of changing the wavefront that is being formed in order to obtain the response function of the electrooptical system under study. Optical systems built using the TESAF process are already successfully used. Key words: surface shaping, aspheric surface, surface interferogram, standard deviation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call