Abstract

A procedure of the method of reverberation ray matrix (MRRM) is developed to perform the buckling analysis of thin multi-span rectangular plates having internal line supports or stiffeners. A computation algorithm for the reverberation ray matrix in the MRRM is derived to determine the buckling loading. Specifically, the analytical solutions are presented for the buckling of the structure having two opposite simply-supported or clamped-supported edges with spans, while the constraint condition of two remaining edges may be in any combination of free, simply-supported, and clamped boundary conditions. Furthermore, based on the analysis of matrices relating to the unknown coefficients in the solution form for the deflection in terms of buckling modal functions, some recursive equations (REs) for the MRRM are introduced to generate a reduced reverberation ray matrix with unchanged dimension when the number of spans increases, which promotes the computation efficiency. Several numerical examples are given, and the present results are compared with the known solutions to illustrate the validity and accurateness of the MRRM for the buckling analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.