Abstract

The early transient responses of multi-span stepped single walled carbon nanotubes (SWCNTs) under impact loadings are studied by the method of reverberation ray matrix (MRRM). The dynamics model of the carbon nanotubes is established in the Fourier phase space on the basis of the nonlocal Timoshenko beam model. The wave solutions of SWCNTs with arbitrary boundary conditions are obtained by the wave method. The reverberation ray matrix of the multi-span stepped SWCNTs is the product of scattering, phase and permutation matrices, which can be determined by the impact loadings, continuous conditions and boundary conditions. The early transient responses can be calculated by the inverse Fourier transform of the sum of initial ray groups. It can be found that the early transient displacement response in the very short time subjected to the impact loading is very small, while the transient transverse shear strain becomes large in the very short time. The influences of nanotubes span number, nanotubes type and boundary conditions on the early transient responses of multi-span stepped SWCNTs are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call