Abstract

In this paper a probabilistic economic dispatch model considering thermal units (fuel generators), photovoltaic arrays and wind energy conversion systems is proposed. Wind speed, solar radiation and power demand are recognized as random variables. Unavailability of each type of power source is also considered. The solution strategy is based on the Monte Carlo method and non-linear constrained optimization. The optimal solution involves single and multidimensional probabilities, descriptive statistics, cluster and bimodal analysis. The proposed methodology yields the probability distributions of system marginal price, thermal (fuel based), solar and wind power generation and load shedding. The proposed model and methodology are applied to a case study of the Northern Chilean electrical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.