Abstract

In mixed and dynamic traffic environments, accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles (AVs) to accomplish reasonable behavioral decisions and guarantee driving safety. In this paper, we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction, which consists of a driving inference model (DIM) and a trajectory prediction model (TPM). The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network. The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information. To further improve the prediction accuracy and realize uncertainty estimation, we develop a Gaussian process (GP)-based TPM, considering both the short-term prediction results of the vehicle model and the driving motion characteristics. Afterward, the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios. The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.