Abstract
In this paper we study the distribution of the size of the value set for a random polynomial with a prescribed index ℓ|(q−1) over a finite field Fq, through the study of a random r-th order cyclotomic mapping with index ℓ. We obtain the exact probability distribution of the value set size and show that the number of missing cosets (values) tends to a normal distribution as ℓ goes to infinity. A variation on the size of the union of some random sets is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.