Abstract

We study value sets of polynomials over a finite field, and value sets associated to pairs of such polynomials. For example, we show that the value sets (counting multiplicities) of two polynomials of degree at mostdare identical or have at mostq−(q−1)/dvalues in common whereqis the number of elements in the finite field. This generalizes a theorem of D. Wan concerning the size of a single value set. We generalize our result to pairs of value sets obtained by restricting the domain to certain subsets of the field. These results are preceded by results concerning symmetric expressions (of low degree) of the value set of a polynomial. K. S. Williams, D. Wan, and others have considered such expressions in the context of symmetric polynomials, but we consider (multivariable) polynomials invariant under certain important subgroups of the full symmetry group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.