Abstract

In recent years, several studies proposed privacy-preserving algorithms for solving Distributed Constraint Optimization Problems (DCOPs). All of those studies assumed that agents do not collude. In this study we propose the first privacy-preserving DCOP algorithm that is immune against coalitions, under the assumption of honest majority. Our algorithm -- PC-SyncBB -- is based on the classical Branch and Bound DCOP algorithm. It offers constraint, topology and decision privacy. We evaluate its performance on different benchmarks, problem sizes, and constraint densities. We show that achieving security against coalitions is feasible. As all existing privacy-preserving DCOP algorithms base their security on assuming solitary conduct of the agents, we view this study as an essential first step towards lifting this potentially harmful assumption in all those algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.