Abstract

An increasing number of complex problems have naturally posed significant challenges in decision-making theory and reinforcement learning practices. These problems often involve multiple conflicting reward signals that inherently cause agents’ poor exploration in seeking a specific goal. In extreme cases, the agent gets stuck in a sub-optimal solution and starts behaving harmfully. To overcome such obstacles, we introduce two actor-critic deep reinforcement learning methods, namely Multi-Critic Single Policy (MCSP) and Single Critic Multi-Policy (SCMP), which can adjust agent behaviors to efficiently achieve a designated goal by adopting a weighted-sum scalarization of different objective functions. In particular, MCSP creates a human-centric policy that corresponds to a predefined priority weight of different objectives. Whereas, SCMP is capable of generating a mixed policy based on a set of priority weights, i.e., the generated policy uses the knowledge of different policies (each policy corresponds to a priority weight) to dynamically prioritize objectives in real time. We examine our methods by using the Asynchronous Advantage Actor-Critic (A3C) algorithm to utilize the multithreading mechanism for dynamically balancing training intensity of different policies into a single network. Finally, simulation results show that MCSP and SCMP significantly outperform A3C with respect to the mean of total rewards in two complex problems: Food Collector and Seaquest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call