Abstract
Despite recent breakthroughs in power conversion efficiencies (PCEs), which have resulted in PCEs exceeding 22%, perovskite solar cells (PSCs) still face serious drawbacks in terms of their printability, reliability, and stability. The most efficient PSC architecture, which is based on titanium dioxide as an electron transport layer, requires an extremely high‐temperature sintering process (≈500 °C), reveals hysterical discrepancies in the device measurement, and suffers from performance degradation under light illumination. These drawbacks hamper the practical development of PSCs fabricated via a printing process on flexible plastic substrates. Herein, an innovative method to fabricate low‐temperature‐processed, hysteresis‐free, and stable PSCs with a large area up to 1 cm2 is demonstrated using a versatile organic nanocomposite that combines an electron acceptor and a surface modifier. This nanocomposite forms an ideal, self‐organized electron transport layer (ETL) via a spontaneous vertical phase separation, which leads to hysteresis‐free, planar heterojunction PSCs with stabilized PCEs of over 18%. In addition, the organic nanocomposite concept is successfully applied to the printing process, resulting in a PCE of over 17% in PSCs with printed ETLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.