Abstract

In some crime scenes, there may be bare footprints. Analyzing and testing the linear measurements of bare footprints in crime scenes can play an important role in personal analysis and individual identification. However, the linear measurements of bare footprints may be influenced by different motion states, leading to changes in length and width or even significant deviations. Previous studies focused on the linear differences between static and dynamic footprints, and failed to take the speed factor into consideration. This paper studied the stability and change regularities of the linear measurements of bare footprints in four different motion states: standing, normal walking, fast walking and trotting. Dust footprints of the right feet were collected from 80 healthy young adults under these four motion states. Seven linear measurements were obtained for each footprint using the Reel method, totaling 2240 data sets. One-way repeated measures ANOVA was used to assess the measurement variations across the four states. The results showed that there were statistically significant variances in the length measurements (A1-A5) between the standing state and other motion states, whereas no statistically significant variances were observed between the three dynamic states. It was found that the mean values of the five length measurements (A1–A5) increased from static to dynamic state, and then gradually decreased slightly as the walking speed increased. Additionally, no significant differences were found in the two width measurements (MPJ Width and Calc Width) between the four motion states. As a preliminary study, this study can provide a reference for the analysis of bare footprints in different motion states extracted from crime scenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.