Abstract

In this paper, ambient total suspended particulates (TSP) with a focus on humic-like substances (HULIS) are characterized based on intensive ground-based field samplings collected in Malaysia during non-haze and haze periods caused by peatland fires on the Indonesian island of Sumatra. Furthermore, concentrations of water-soluble organic carbon (WSOC) and carbon content of HULIS (HULIS-C) were determined, and fluorescence spectra of the HULIS samples were recorded by excitation emission matrix (EEM) fluorescence spectroscopy. The concentrations of WSOC and HULIS-C over the entire period ranged from 4.1 to 24 and 1.3 to 18 μgC m−3, respectively. The concentrations of WSOC and HULIS-C during the peatland fire-induced strong haze periods were over 4.3 and 6.1 times higher, respectively, than the average values recorded during the non-haze periods. Even during the light haze periods, the concentrations of WSOC and HULIS-C were significantly higher than their averages during the non-haze periods. These results indicate that peatland fires induce high concentrations of WSOC, particularly HULIS-C, in ambient TSP at receptor sites. EEM fluorescence spectra identified fulvic-like fluorophores at the highest intensity level in the EEM fluorescence spectra of the haze samples. A peak at excitation/emission (Ex/Em) ≈ (290–330)/(375–425) nm is also observed at high intensity, though this peak is normally associated with marine humic-like fluorophores. It is shown that a peak at Ex/Em ≈ (290–330)/(375–425) nm is not derived from marine sources only; furthermore, peatland fires are shown to be important contributors to HULIS around this peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.