Abstract

ABSTRACT Spider webs vary in size to meet the nutritional requirements of the resident spider with the resident’s body size strongly informing these requirements. In this way, the effect of body size on web-building behaviour should be apparent across species. To determine whether the size of analogous web structures scales with body size across closely related species, we first measured mainsheet area and adult female body size of 12 sheet-web spider species (Cambridgea). Using these species, we then generated alignments from the cytochrome c oxidase subunit I (COI) and histone 3 (H3) gene regions. These alignments were phylogenetically analysed using Bayesian inference and maximum likelihood methods. While phylogenetic trees for the COI gene suggested that Cambridgea is monophyletic relative to sampled outgroups, H3 did not. Combining our COI phylogenetic tree’s branch lengths with data on web-building behaviour, we used phylogenetic least squares to determine whether web size scales with spider size across species. While we found evidence that larger species generally build larger webs, the variation in web size across even similarly sized species suggests that environmental characteristics which influence site selection and prey type may play a role in determining the optimal web size for different species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.