Abstract

IntroductionCirculating biomarkers have been increasingly used in the clinical management of breast cancer. The present study evaluated whether RNAs and a protein present in the plasma of patients with breast cancer might have utility as prognostic biomarkers complementary to existing clinical tests. Patients and MethodsWe performed microarray profiling of small noncoding RNAs in plasma samples from 30 patients with breast cancer and 10 control individuals. Two small noncoding RNAs, including microRNA (miR)-923, were selected and quantified in plasma samples from an evaluation cohort of 253 patients with breast cancer, using droplet digital polymerase chain reaction. We also measured cancer antigen (CA) 15-3 protein levels in these samples. Cox regression survival analysis was used to determine which markers were associated with patient prognosis. ResultsAs independent markers of prognosis, the plasma levels of miR-923 and CA 15-3 at the time of surgery for breast cancer were significantly associated with prognosis, irrespective of treatment (Cox proportional hazards, P = 3.9 × 10−3 and 1.9 × 10−9, respectively). After building a multivariable model with standard clinical and pathological features, the addition of miR-923 and CA 15-3 information into the model resulted in a significantly better predictor of disease recurrence in patients, irrespective of treatment, compared with the use of clinicopathological data alone (area under the curve at 3 years, 0.858 vs. 0.770 with clinicopathological markers only; P = .017). ConclusionWe propose that the plasma levels of miR-923 and CA 15-3, combined with standard clinicopathological predictors, could be used as a preoperative, noninvasive estimate of patient prognosis to identify which women might need more aggressive treatment or closer surveillance after surgery for breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.