Abstract
Abstract A predictor–corrector compact finite difference scheme is proposed for a nonlinear partial integro-differential equation. In our method, the time direction is approximated by backward Euler scheme and the Riemann–Liouville (R–L) fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, a two-step predictor–corrector (P–C) algorithm called MacCormack method is used. A fully discrete scheme is constructed with space discretization by compact finite difference method. Numerical experiment presents the scheme is in good agreement with the theoretical analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have