Abstract
Background and objectiveThis study investigates the application of a Predictive Surrogate Model (PSM) for the prediction of the fluid and solid variables in the abdominal aorta by integrating Proper Orthogonal Decomposition (POD) and Long Short-Term Memory (LSTM) techniques. MethodsThe Fluid-Structure Interaction (FSI) solver, which serves as the Full-Order Model (FOM), can capture the blood hemodynamics and structural mechanics precisely for a variety of physiological states, namely the rest and exercise conditions. ResultsDetailed analyses have been conducted on velocity components, pressure, Wall Shear Stress (WSS), and Oscillatory Shear Index (OSI) variables. Firstly, the reconstruction error has been derived based on a specific number of POD bases to assess the Reduced Order Model (ROM). Notably, the reconstruction error for velocity components in the rest condition is one order of magnitude higher than that in the exercise condition, yet both remained below 10%. This error for pressure is even more minimal, being less than 1%. ConclusionsThe PSM is evaluated against rest and exercise conditions, exhibiting promising results despite the inherent complexities of the physiological conditions. Despite the inherent complexities of phenomena in the aorta, the predictive model demonstrates consistent error magnitudes for velocity components and wall-related indices, while solid variables show slightly higher errors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have