Abstract

This study addresses the challenge of accurately forecasting demand for maintenance-related spare parts of the K-X tank, influenced by high uncertainty and external factors. Deep learning models with RobustScaler demonstrate significant improvements, achieving an accuracy of 86.90% compared to previous methods. RobustScaler outperforms other scaling models, enhancing machine learning performance across time series and data mining. By collecting eight years’ worth of demand data and utilising various consumption data items, this study develops accurate forecasting models that contribute to the advancement of spare parts demand forecasting. The results highlight the effectiveness of the proposed approach, showcasing its superiority in accuracy, precision, recall, and F1-Score. RobustScaler particularly excels in time series analysis, further emphasizing its potential for enhancing machine learning performance on diverse datasets. This study provides innovative techniques and insights, demonstrating the effectiveness of deep learning and data scaling methodologies in improving forecasting accuracy for maintenance spare parts demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.