Abstract

In rotating machinery with a multi-stage assembled rotor, such as is found in aero engines, any unbalance present will undergo unknown changes at each stage when rotating the assembly phases of the rotor. Repeated disassembly and adjustments are often required to meet the rotor’s residual unbalance specifications. Therefore, developing a prediction model of this two-sided unbalance for a multi-stage assembled rotor is crucial for improving the first-time assembly pass rate and assembly efficiency. In this paper, we propose a prediction model of the two-sided unbalance seen in the multi-stage assembled rotor of an aero engine. Firstly, a method was proposed to unify the mass feature parameters of each stage’s rotor into a geometric measurement coordinate system, achieving the synchronous transmission of geometric and mass feature parameters during the assembly process of the multi-stage rotor. Building upon this, a linear parameter equation of the actual rotation axis of the multi-stage rotor was established. Based on this axis, the mass eccentricity errors of the rotor were calculated at each stage, further enabling the accurate prediction of two-sided unbalance and its action phase in a multi-stage rotor. The experimental results indicate that the maximum prediction errors of the two-sided unbalance and its action phase for a four-stage rotor are 9.6% and 2.5%, respectively, when using this model, which is a reduction of 53.0% and 38.1% compared to the existing model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call