Abstract

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the normalization of COVID-19 globally, it is crucial to construct a prediction model that enables clinicians to identify patients at risk for ProLOS based on demographics and serum inflammatory biomarkers. The study included hospitalized patients with a confirmed diagnosis of COVID-19. These patients were randomly grouped into a training (80%) and a test (20%) cohort. The LASSO regression and ten-fold cross-validation method were applied to filter variables. The training cohort utilized multifactorial logistic regression analyses to identify the independent factors of ProLOS in COVID-19 patients. A 4-variable nomogram was created for clinical use. ROC curves were plotted, and the area under the curve (AUC) was calculated to evaluate the model's discrimination; calibration analysis was planned to assess the validity of the nomogram, and decision curve analysis (DCA) was used to evaluate the clinical usefulness of the model. The results showed that among 310 patients with COVID-19, 80 had extended hospitalization (80/310). Four independent risk factors for COVID-19 patients were identified: age, coexisting chronic respiratory diseases, white blood cell count (WBC), and serum albumin (ALB). A nomogram based on these variables was created. The AUC in the training cohort was 0.808 (95% CI: 0.75 - 0.8671), and the AUC in the test cohort was 0.815 (95% CI: 0.7031 - 0.9282). The model demonstrates good calibration and can be used with threshold probabilities ranging from 0% to 100% to obtain clinical net benefits. A predictive model has been created to accurately predict whether the hospitalization duration of COVID-19 patients will be prolonged. This model incorporates serum WBC, ALB levels, age, and the presence of chronic respiratory system diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.