Abstract
Industrial robots are widely used because of their high flexibility and low cost compared with CNC machine tools, but the low tracking accuracy limits their application in the field of high-precision manufacturing. To improve the tracking accuracy and solve the complex modeling problems, a prediction and compensation method of robot tracking error is proposed based on temporal convolutional network (TCN), where the pose-dependent effect of load on joint tracking error is considered. The terminal load is decomposed to joint load by using Jacobian matrix and then used as the pose-dependent information of the data-based model. A prediction model based on TCN is used to predict the tracking error of joints. Finally, a pre-compensation method is adopted to improve the joint tracking accuracy based on the predicted errors. Experimental results show that the model presents good prediction and compensation accuracy. The mean absolute tracking errors are increased by more than 80% in the test path. This method can effectively compensate the tracking errors of the robot joints and therefore greatly improve the tracking accuracy of the tool center point and tool orientation in the Cartesian coordinate system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.