Abstract

Time-varying linear equations (TVLEs) play a fundamental role in the engineering field and are of great practical value. Existing methods for the TVLE still have issues with long computation time and insufficient noise resistance. Zeroing neural network (ZNN) with parallel distribution and interference tolerance traits can mitigate these deficiencies and thus are good candidates for the TVLE. Therefore, a new predefined-time adaptive ZNN (PTAZNN) model is proposed for addressing the TVLE in this article. Unlike previous ZNN models with time-varying parameters, the PTAZNN model adopts a novel error-based adaptive parameter, which makes the convergence process more rapid and avoids unnecessary waste of computational resources caused by large parameters. Moreover, the stability, convergence, and robustness of the PTAZNN model are rigorously analyzed. Two numerical examples reflect that the PTAZNN model possesses shorter convergence time and better robustness compared with several variable-parameter ZNN models. In addition, the PTAZNN model is applied to solve the inverse kinematic solution of UR 5 robot on the simulation platform CoppeliaSim, and the results further indicate the feasibility of this model intuitively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.