Abstract

We report the design and experimental validation of a compact positron emission tomography (PET) detector module (DM) intended for building a preclinical PET and electron-paramagnetic-resonance-imaging hybrid system that supports sub-millimeter image resolution and high-sensitivity, whole-body animal imaging. The DM is eight detector units (DU) in a row. Each DU contains 12×12 lutetium-yttrium oxyorthosilicate (LYSO) crystals having a 1.05 mm pitch read by 4×4 silicon photomultipliers (SiPM) having a 3.2 mm pitch. A small-footprint, highly-multiplexing readout employing only passive electronics is devised to produce six outputs for the DM, including two outputs derived from SiPM cathodes for determining event time and active DU and four outputs derived from SiPM anodes for determining energy and active crystal. Presently, we have developed two DMs that are 1.28×10.24 cm2 in extent and approximately 1.8 cm in thickness, with their outputs sampled at 0.7 GS/s and analyzed offline. For both DMs, our results show successfully discriminated DUs and crystals. With no correction for SiPM nonlinearity, the average energy resolution for crystals in a DU ranges from 14% to 16%. While not needed for preclinical imaging, the DM may support 300-400 ps time-of-flight resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call