Abstract
Lyophilization, or freeze-drying, is the default technique for the manufacture of solid-state formulations of therapeutic proteins. This established method offers several advantages, including improved product stability by minimizing chemical degradation, reduced storage requirements through water removal, and elimination of cold chain dependence. However, the lyophilization process itself presents limitations. It is a lengthy, batch-based operation, potentially leading to product inconsistencies and high manufacturing costs. Additionally, some proteins are susceptible to structural alterations during the freezing step, impacting their biological activity. This paper presents an alternative approach based on the co-precipitation of protein and excipients using an organic solvent. We explore the impact of various processing parameters on the viability of the formulation. We also provide an extensive characterization of proteins reconstituted from precipitated formulations and compare protein stability in solution and in lyophilized and precipitated solid formulations under long-term, accelerated, and stressed storage conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have