Abstract

The modern age of wastewater treatment modelling began with publication of the International Water Association (IWA) Activated Sludge Model (ASM) No.1 and has advanced significantly since. Models are schematic representations of systems that are useful for analysis to support decision-making. The most appropriate model for a particular application often incorporates only those components essential for the particular analyses to be performed (i.e. the simplest model possible). Characteristics of effective models are presented, along with how wastewater modelling is integrated into the wastewater project life cycle. The desirable characteristics of wastewater treatment modelling platforms are then reviewed. Current developments of note in wastewater treatment modelling practice include estimates of greenhouse gas emissions, incorporating uncertainty into wastewater modelling and design practice, more fundamental modelling of process chemistry, and improved understanding of the degradability of wastewater constituents in different environments. Areas requiring greater emphasis include increased use of metabolic modelling, characterisation of the hydrodynamics of suspended and biofilm biological treatment processes, and the integration of biofilm and suspended growth process modelling. Wastewater treatment models must also interface with water and wastewater management software packages. While wastewater treatment modelling will continue to advance and make important contributions to practice, it must be remembered that these are complex systems which exhibit counter-intuitive behaviour (results differ from initial expectations) and multiple dynamic steady-states which can abruptly transition from one to another.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call