Abstract

Wave energy resource characterization investigations have been hindered because frequency-directional wave spectra are not broadly available for many coastal regions due to the insufficient spatial coverage of buoy observation networks and spectral wave model hindcast outputs. We address this problem by developing and validating a practical method for approximating temporally-averaged frequency-directional wave spectra averaged over periods of months or years from bulk wave parameters, which are available at a much greater coverage and resolution than frequency-directional wave spectra. While the temporally averaged frequency-directional wave spectrum over these periods cannot be used for analyzing a single sea state, it aggregates multiple sea states, identifies dominant wave energy systems representing wave climate, and resolves their spectral characteristics. Therefore, modelling temporally averaged frequency-directional wave spectra is of great value for planning and designing wave energy projects, e.g., resource characterization, site assessment, and conceptual design of wave energy converters. Temporally-averaged frequency-directional wave spectra and related important wave energy parameters approximated using this method are found to be more accurate than commonly used parametric wave spectrum models. This method can be applied to a wide range of wave climates given its universality and high accuracy. Also, the availability of bulk wave parameters from multi-decade high-resolution wave model hindcasts is increasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.