Abstract

The hysteresis dynamic behavior of metal rubber mathematically modeled with a practical method is studied, and the method of parameter separated identification is presented with details. Parameters of the model are identified with the test data of metal rubber, from which the theoretical loops are reconstructed, and the mechanism of the nonlinear damping behavior of the metal rubber is investigated. The theoretical loops and the experimental one are close to each other with satisfactory accuracy. The result shows that with the simple mathematical form and the satisfactory precision, the mixed damping model can be used effectively in practical engineering. This study provides a practical and effective method in modeling and the parameter identification of the metal rubber isolator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.