Abstract

Cross-view image matching has attracted extensive attention due to its huge potential applications, such as localization and navigation. Unmanned aerial vehicle (UAV) technology has been developed rapidly in recent years, and people have more opportunities to obtain and use UAV-view images than ever before. However, the algorithms of cross-view image matching between the UAV view (oblique view) and the satellite view (vertical view) are still in their beginning stage, and the matching accuracy is expected to be further improved when applied in real situations. Within this context, in this study, we proposed a cross-view matching method based on location classification (hereinafter referred to LCM), in which the similarity between UAV and satellite views is considered, and we implemented the method with the newest UAV-based geo-localization dataset (University-1652). LCM is able to solve the imbalance of the input sample number between the satellite images and the UAV images. In the training stage, LCM can simplify the retrieval problem into a classification problem and consider the influence of the feature vector size on the matching accuracy. Compared with one study, LCM shows higher accuracies, and Recall@K (K ∈ {1, 5, 10}) and the average precision (AP) were improved by 5–10%. The expansion of satellite-view images and multiple queries proposed by the LCM are capable of improving the matching accuracy during the experiment. In addition, the influences of different feature sizes on the LCM’s accuracy are determined, and we found that 512 is the optimal feature size. Finally, the LCM model trained based on synthetic UAV-view images was evaluated in real-world situations, and the evaluation result shows that it still has satisfactory matching accuracy. The LCM can realize the bidirectional matching between the UAV-view image and the satellite-view image and can contribute to two applications: (i) UAV-view image localization (i.e., predicting the geographic location of UAV-view images based on satellite-view images with geo-tags) and (ii) UAV navigation (i.e., driving the UAV to the region of interest in the satellite-view image based on the flight record).

Highlights

  • The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, College of Meteorology and Oceanography, National University of Defense Technology, Abstract: Cross-view image matching has attracted extensive attention due to its huge potential applications, such as localization and navigation

  • The Unmanned aerial vehicle (UAV) has the advantages of strong maneuverability, convenient operation, being hardly influenced by cloud, strong data acquisition abilities [1,2,3], etc., which make it widely applied in various fields [4,5,6,7,8,9,10,11,12]

  • To overcome the shortcomings of existing methods in cross-view image matching between the satellite view and the UAV view, we proposed a cross-view image matching method based on location classification (LCM)

Read more

Summary

Introduction

The algorithms of cross-view image matching between the UAV view (oblique view) and the satellite view (vertical view) are still in their beginning stage, and the matching accuracy is expected to be further improved when applied in real situations. Within this context, in this study, we proposed a cross-view matching method based on location classification (hereinafter referred to LCM), in which the similarity between UAV and satellite views is considered, and we implemented the method with the newest UAV-based geo-localization dataset (University-1652). How to efficiently locate the UAV images without geo-tags and navigate the UAV when the positioning system (e.g., GPS) is not available still face great challenges

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.