Abstract

This paper aims to develop a practical artificial neural network (ANN) model for predicting the punching shear strength (PSS) of two-way reinforced concrete slabs. In this regard, a total of 218 test results collected from the literature were used to develop the ANN models. Accordingly, the slab thickness, the width of the column section, the effective depth of the slab, the reinforcement ratio, the compressive strength of concrete, and the yield strength of reinforcement were considered as input variables. Meanwhile, the PSS was considered as the output variable. Several ANN models were developed, but the best model with the highest coefficient of determination (R2) and the smallest root mean square errors was retained. The performance of the best ANN model was compared with multiple linear regression and existing design code equations. The comparative results showed that the proposed ANN model was provided the most accurate prediction of PSS of two-way reinforced concrete slabs. The parametric study was carried out using the proposed ANN model to assess the effect of each input parameter on the PSS of two-way reinforced concrete slabs. Finally, a graphical user interface was developed to apply for practical design of PSS of two-way reinforced concrete slabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.