Abstract

A potential-driven nickel oxide/NiCo layered double hydroxide (NiO/NiCo LDH) composite film was deposited within the stainless steel wire mesh, showing excellent Br− extraction in an electrochemically switched ion exchange (ESIX) system. In this composite film, NiO with a high specific surface area and porous structure served as the lower layer to improve the electrical conductivity and ion storage capacity of the film, while NiCo LDH served as the main selective separation layer to selectively adsorb the target Br−. The film electrode extracted Br− up to 159.25 mg·g−1 and the separation factors of Br−/Cl−, Br−/NO3−, and Br−/I− were 2.04, 8.89, and 5.45, respectively. The film electrode showed excellent adsorption–desorption cyclability and electrochemical stability since the NiO increased the binding force and electrical conductivity between NiCo LDH and substrate, and its porous structure accommodated Br−. The highly efficient extraction of Br− in neutral solution was attributed to the electrochemical coordination and interlayer anion exchange sites of NiO/NiCo LDH. This study provided a deep understanding of the ion selective extraction mechanism of LDH-based materials by ESIX technology and the novel electrochemical reaction design of electrodes, which could be used in other fields such as supercapacitors, sensors, and batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.