Abstract
This paper presents an a posteriori error analysis for the stationary Stokes–Darcy coupled problem approximated by finite element methods on anisotropic meshes in or 3. Korn's inequality for piecewise linear vector fields on anisotropic meshes is established and is applied to non‐conforming finite element method. Then the existence and uniqueness of the approximation solution are deduced for non‐conforming case. With the obtained finite element solutions, the error estimators are constructed and based on the residual of model equations plus the stabilization terms. The lower error bound is proved by means of bubble functions and the corresponding anisotropic inverse inequalities. In order to prove the upper error bound, it is vital that an anisotropic mesh corresponds to the anisotropic function under consideration. To measure this correspondence, a so‐called matching function is defined, and its discussion shows it to be useful tool. With its help, the upper error bound is shown by means of the corresponding anisotropic interpolation estimates and a special Helmholtz decomposition in both media. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.