Abstract
We derive a posteriori error estimates for the discretization of the unsteady linear convection–diffusion–reaction equation approximated with the cell-centered finite volume method in space and the backward Euler scheme in time. The estimates are based on a locally postprocessed approximate solution preserving the conservative fluxes and are established in the energy norm. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision and refines the meshes adaptively while equilibrating the time and space contributions to the error. Numerical experiments illustrate the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.