Abstract

The radiative transfer equation (RTE) arises in a wide variety of applications. In the literature, there has been much study of the RTE. The main purpose of the paper is to present a unified framework to develop a posteriori estimates for numerical solution errors and modeling errors, in an energy norm natural to the RTE problem. The derivation of the error estimates is through duality arguments. A posteriori error estimates in an norm are also presented, extending existing results available in the literature. The error estimates are completely computable in the sense that no unspecified constants are involved. A posteriori error estimates for numerical solutions are the basis for developing efficient adaptive solution algorithms, whereas a posteriori estimates for modeling errors are useful to analyze the effects of uncertainties in problem data on the solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.